
Deep Learning For Fruits Image Recognition1

N. Gheza

21st June 2019

Abstract

A subsection of object classification and detec-
tion from images is fruit recognition. This work
presents the training of different Deep Neural
Networks (DNN) for fruit images classification
and detection. At first, a Deep Convolutional
Neural Network (DCNN) is trained from scratch
on two benchmark datasets for fruit classifi-
cation. Then, the same datasets are used to
fine-tune two pre-trained models, Inception v3
and MobileNetV2, to improve the performance
of the fruit classifier. At last, using a fruit
benchmark dataset with bounding boxes anno-
tations, fruit detection is achieved by fine-tuning
a Faster R-CNN architecture using ResNet-101
pre-trained model as base architecture.

1 Introduction

Being able to develop an accurate fruit detection
system can significantly contribute to many ap-
plications such as fully automated harvesting,
fruit grading, etc. This work presents the train-
ing of different architectures for image classifica-
tion and detection. Three benchmark datasets
are used for the training and evaluation of the
models. The first two datasets are used to train
multiple models using different Deep Convolu-
tional Neural Network (DCNN) architectures
for image classification. The third dataset, in-
stead, is used to train a Faster R-CNN model
for image detection.

The remainder of this paper consists of the
following. Section 2 introduces the state-of-the-
art for fruits recognition from images. Section
3 presents the benchmarking datasets used for
the training and testing the multiple architec-
tures presented in the paper and a comparison

1This thesis was prepared in partial fulfillment of the
requirements for the Degree of Bachelor of Science in
Data Science and Knowledge Engineering, Maastricht
University, Supervisors: Alexia Briassouli, Gerasimos
Spanakis.

between them. In Section 4, the SoA fruit clas-
sification techniques are introduced. In particu-
lar, a Convolutional Neural Network (DCNN)
trained from scratch and the use of transfer
learning to fine-tune pre-trained models. Fruit
detection which involves spatial localization, in
addition to classification, is presented in Section
5 with an introduction to the Faster R-CNN ar-
chitecture and the training of multiple models
for the task of finding the position and classify-
ing multiple fruits in an image. Results of Fruit
classification and detection are discussed in Sec-
tion 6. Conclusions are finally drawn in Section
7.

2 State Of The Art

Many attempts have been made to use neural
networks and deep learning for fruits recogni-
tion. This section will review several of those at-
tempts. The computer vision task dealing with
classification and detection of objects of a cer-
tain class (e.g., ’cat’, ’dog’, etc) in images made
substantial progress during the last 5 years. A
reason for the strong interest and considerable
advances in this area is the arrival of Deep Con-
volutional Neural Networks (DCNN) [1].

Hussain et al. [7] propose a fruit recognition
algorithm based on Deep Convolutional Neu-
ral Network (DCNN) for 15 classes of fruit im-
ages and a total of 44406 images. Another
fruit recognition system based on Deep Convo-
lutional Neural Network (DCNN) is proposed
by [9] in 2018. The authors introduced a new
high-quality dataset of images of different fruits.
The dataset, which was named Fruits-360, con-
tains 103 different fruits and a total of 71022 im-
ages. The same paper also presents the results
of different numerical experiments for training
a Deep Convolutional Neural Network (DCNN)
to recognise fruits. The previous research used
the big amount of images to train the models
from scratch. This process requires a lot of time,

1



N. Gheza Deep learning for fruits image recognition

data and computational power. Femling et al.
[2] describe an approach that avoids the cost
of training from scratch in a system that can
identify fruits and vegetables in the retail mar-
ket using images captured by a video camera.
For the fruits and vegetables classification they
used different Deep Convolutional Neural Net-
work (DCNN) pre-trained architectures and ap-
plied transfer learning by fine-tuning these pre-
trained architectures to their dataset.

In the previous applications the authors
aimed at building image classification system
for the specific purpose of classifying pictures
of fruits. An even more challenging problem
when dealing with objects recognition is find-
ing its position in the image. A novel approach
for detecting fruits and their location in im-
ages using Deep Neural Network (DNN) is pre-
sented in [12]. In this paper, the authors present
a rapid training and real-time fruit detection
system based on Faster Region-based Convo-
lutional Neural Networks (Faster R-CNN) that
can be adapted to various types of fruits with a
minimum number of training images.

3 Datasets

Benchmarking datasets have become available
for the training and testing of various Deep Neu-
ral Networks (DNNs) and their objective com-
parison. Table 1 introduces the datasets used
in this paper by showing the number of images
and categories for each dataset. Following, each
dataset will be presented and described.

Dataset # images # categories

Dataset 1 [9] 71022 103
Dataset 2 [7] 44406 15
Dataset 3 [12] 614 7

Table 1: Number of images and categories in each
dataset.

3.1 Dataset 1

The first dataset - Fruit-360 - created by H.
Murean and M. Oltean [9], contains 61934 im-
ages of fruits spread across 90 labels. The im-
ages were obtained by filming the fruits while
being rotated by a motor and then extracting
frames. Successively, a dedicated algorithm ex-
tracted the fruit from the background and scaled

the images down to 100x100 pixels. An example
image is shown in Figure 1.

Figure 1: Example image from Dataset 1 - Fruit-
360.

3.2 Dataset 2

The second dataset, created by Hussain et al.
[7], contains 44406 fruit images sorted in 15 cat-
egories of fruits. The pictures were captured
using an HD Logitech web camera with a reso-
lution of 320x258x3 pixels. An example image
is shown in Figure 2.

Figure 2: Example image from Dataset 2.

3.3 Dataset 3

The last dataset, created by Sa et al. [12], is
a very small dataset compared to the previous
two. In fact, this dataset only contains 563 fruit
images sorted in 7 different categories of fruits.
The special characteristics of this dataset, com-
pared to the others, is that it contains annota-
tions with the location of each fruit in the im-
ages together with its classification. An example
image is shown in Figure 3.

4 Fruit Classification

Multiple techniques are available when one
wants to develop an image classifier. In this

2



N. Gheza Deep learning for fruits image recognition

Figure 3: Example image from Dataset 3 - with
drawn bounding boxes based on annotations.

particular case, the goal is to be able to classify
multiple categories of fruits from an image with
one or multiple fruits. Two datasets, Dataset
1 and 2, will be used in the training of mul-
tiple image classifiers. These two datasets are
quite different: the first dataset [9] contains very
simple images with just the picture of the fruit
extracted from the background, as in Figure 1.
The second one [7], instead, contains pictures of
fruits on a tray and the images are more noisy.
Figure 2 is an example of such images.

4.1 Deep C-NN

In this paper, the first implementation of a fruit
image classifier was done by training a Deep
Convolutional Neural Network (DCNN) with
the same architecture as in [9]. This architec-
ture is given in Table 2.

Layer type Dimensions Output

Convolutional 5 x 5 x 4 16
Max pooling 2 x 2 stride 2 -

Convolutional 5 x 5 x 16 32
Max pooling 2 x 2 stride 2 -

Convolutional 5 x 5 x 4 64
Max pooling 2 x 2 stride 2 -

Convolutional 5 x 5 x 16 128
Max pooling 2 x 2 stride 2 -

Fully connected 5 x 5 x 128 1024
Fully connected 1024 256

Softmax 256 Num. classes

Table 2: Architecture of the neural network used in
this paper.

The first layer is a convolutional layer which
applies 16 5x5 filters to the input image. This
layer that retains the most important features
is then followed by a max pooling layer with
a filter of shape 2x2 with stride 2. Max pool-
ing is a sample-based discretization process that

down-sample an input representation by apply-
ing a max filter to non-overlapping subregions
of the initial representation. The stride of 2 is
used to avoid overlaps between the regions rep-
resented by the filter [8]. The second convo-
lutional layer applies 32 5x5 filters to the out-
put of the first two layers and similarly to the
first convolutional layer it applies a max pooling
layer of shape 2x2 with stride 2. The third con-
volutional layer applies 64 5x5 filters followed
by another max pooling layer of shape 2x2 with
stride 2. The fourth, and final, convolutional
layer applies 128 5x5 filters also followed by a
max pooling layer. Following the convolutional
and max pooling layers there is the first fully
connected layer with 5x5x128 inputs and 1024
outputs. The following layer is another fully
connected layer with 1024 inputs and 256 out-
puts. Finally, the last layer is a softmax loss
layer with 256 inputs.

The softmax layer take an N-dimensional vec-
tor of real numbers and transform it into a vec-
tor of real number in range (0, 1) that adds up to
1. The resulting vector contains as many num-
bers as the number of classes (based on each
dataset) which represent the probability of be-
longing to each specific class (or fruit category).

This vector is then used to compute the Cross
Entropy loss during training. The Cross En-
tropy loss indicates the distance between what
the model believes an image is and what the im-
age really is. The Cross-Entropy Loss is defined
as Figure 1. Where ti and si are the groundtruth
and the CNN score for each class i in C and n
is the number of classes (plus the background).

CE = −
C′=n∑
i=1

tilog(si) (1)

4.1.1 Training from scratch

The Deep Convolutional Neural Network
(DCNN) architecture previously explained was
used to build a baseline model for both Dataset
1 and Dataset 2. For both the datasets, the
network was trained over 75000 epochs with a
batch size of 60 images taken from the training
set. Every 100 steps, accuracy is computed us-
ing cross-validation. Finally, the test set is used
to compute the final accuracy.

The initial learning rate for the Deep Convo-
lutional Neural Network (DCNN) is 0.001 and
it is updated every 100 epochs using Eq. 2 until

3



N. Gheza Deep learning for fruits image recognition

it reaches the final learning rate 0.00001.

η = max(η − α ∗ η ∗ 0.9, H) (2)

Where: η is the learning rate, α is the accuracy
and H is the final learning rate.

The training dataset is augmented by prepro-
cessing the RGB images. This takes place by ap-
plying random hue and saturation changes, hor-
izontal and vertical random flips and converting
them to the HSV colorspace and to graycale and
merging them.

As one could expect, the results of the Deep
Convolutional Neural Network (DCNN) trained
on Dataset 1 and Dataset 2 are not the same.
The results for each dataset are presented in the
results section.

4.1.2 Results - Dataset 1

The Deep Convolutional Neural Network
(DCNN) trained from scratch on the Fruit-360
dataset with 100x100 pixels images obtained
good results scoring a final test accuracy of
96.3%.

The number of incorrectly classified fruit im-
ages is 648 on a test set of 17845 images. Thus,
only about 3.7% of the images were misclassi-
fied. Figure 4 shows some example images used
in the evaluation of the model trained on the
Fruit-360 dataset. The first two images on the
top represent an orange and a mandarin which
were correctly classified from the network. In
the bottom the other two images are a lemon
and a pear. The lemon image was classified by
the model as a pear while the pear was classified
as a cherry. This could be because both colors
and shape of lemons and pears are quite similar.
The reason for the pear being misclassified as a
cherry is less clear and to fully investigate this
many more experiments would be required.

4.1.3 Results - Dataset 2

The same Deep Convolutional Neural Network
(DCNN) on Dataset 2 with 150x150 pixels im-
ages was able to attain a final testing accuracy
of 98.7%. On a test set of 8888 fruit images
the number of misclassified images is 114 that is
about 1.3% of the total test set.

Figure 5 shows four examples of testing im-
ages used during the evaluation of the model.
The model correctly classified the first two im-
ages showing that it does not learn only to

Figure 4: Example of testing images used in the
evaluation of the model. The top two images shows
an orange and a mandarin. The bottom images
show a lemon and a pear.

Figure 5: Example of testing images used in the
evaluation of the model. The top two images shows
two different type of apples with different colours.
The bottom images show a banana and a tomato.

detect colours but also shapes and other fea-
tures as the apples in the images have differ-
ent colours. The third and fourth image show
a banana and a tomato. The model misclassi-
fied the banana for a kiwi and the tomato with
an apple. The reason for the misclassification
could be that the images have a lot of lights
but more experiments would be needed to fully
understand why it is happening.

4.2 Transfer Learning

Training an image classifier from scratch re-
quires a lot of labeled data, computing power
and especially time. With transfer learning, it
is possible to reduce the cost of training by tak-
ing a pre-trained model and reusing it to train a
new classifier. The classifier uses feature extrac-

4



N. Gheza Deep learning for fruits image recognition

tion capabilities from SoA classifiers and train a
new classification layer on top of it [10].

4.2.1 Training via Transfer Learning

As for the Deep Convolutional Neural Network
(DCNN), both dataset Dataset 1 and Dataset 2
were used to train two separate models. Trans-
fer learning requires a pre-trained model which
will be fine-tuned to the type of fruit in an im-
age. Different pre-trained model architectures
are publicly available, but comparing all archi-
tectures to each other is not the aim of this work.
Instead, as was done by Femlinget al. [2], the In-
ception and MobileNet architectures were taken
into consideration for the training of multiple
models for the two datasets.

Inception v3 is an opensource image recogni-
tion model that achieved more than 78.1% on
the ImageNet dataset [14]. Mobile and embed-
ded vision applications require lightweight archi-
tectures. MobileNet uses depth-wise separable
convolutions to build light weight Deep Neural
Networks (DNN) [5]. In 2018, Google published
MobileNetV2. MobileNetV2 is a significant im-
provement to its predecessor, MobileNetV1, and
a push to the state of the art in mobile image
recognition [13]. Both models were trained over
4000 training steps with the data split in 70%
for training, 20% for validation, 10% for test-
ing. Learning rate is set to 0.01. Results for the
Inception v3 and MobileNetV2 models are pre-
sented for each dataset in the following results
sections.

4.2.2 Results - Dataset 1

The fine-tuned Inception v3 architecture ob-
tained good results on Dataset 1 scoring a
test accuracy of 97.2% and cross-entropy loss
of 0.4289. From Figure 6 it can be seen the
test accuracy and cross-entropy loss over 4000
steps while fine-tuning the Inception v3 pre-
trained model. Figure 6a shows that the accu-
racy rapidly increases in the first 1000 training
steps and keeps increasing during the next 3000
steps. Figure 6b shows a similar behaviour for
the cross-entropy loss, but as one would expect
the value is decreasing instead of increasing as
for the accuracy. Looking into the mismatches,
200 of the 7161 test fruit images were misclassi-
fied with another fruit.

MobileNetV2 was able to attain a test accu-
racy of 99.7% with cross-entropy loss of 0.1243

(a)

(b)

Figure 6: (a) Test accuracy over 4000 steps for
Dataset 1 with Inception, (b) Test cross-entropy loss
over 4000 steps for Dataset 1 with Inception.

for the Fruit-360 dataset.

Figure 7a and 7b shows the test accuracy and
cross-entropy loss over 4000 steps while fine-
tuning MobileNetV2. From Figure 7a it can
be seen that the accuracy rapidly improves in
the first 1000 iterations and then it slowly im-
proves in the next 3000 iterations. Looking at
Figure 7b it can be seen that the cross-entropy
loss quickly decreases in the first 1000 steps and
then slowly decreases in the next 3000 steps.
The number of misclassified fruit images is only
22 of the 7161 images used for testing. Thus Mo-
bileNetV2 obtained an almost 10-fold improve-
ment compared to the Inception v3 model.

4.2.3 Results - Dataset 2

The Inception v3 model scored 95% testing ac-
curacy with cross-entropy loss 0.2317. Figure 8
shows test accuracy and cross-entropy loss over
4000 iterations. From Figure 8a it can be seen
that the testing accuracy quickly increase in the
first 500 iterations and then keeps increasing
slowly until the end of training. Similarly, Fig-
ure 8b shows that the loss follow the same trend

5



N. Gheza Deep learning for fruits image recognition

(a)

(b)

Figure 7: (a) Test accuracy over 4000 steps for
Dataset 1 with MobileNet, (b) Test cross-entropy
loss over 4000 steps for Dataset 1 with MobileNet.

as the accuracy and quickly decreases in the first
500 iterations to then slowly keep decreasing for
4000 iterations. On a test set of 4409 fruit im-
ages the Inception v3 model misclassified 237
images.

For the Dataset 2, MobileNetV2 obtained
an accuracy of 98.5% with cross-entropy loss
0.08116. Figure 9 shows test accuracy and
cross-entropy over 4000 steps. Both accuracy
and loss keep increasing until the end of train-
ing after 4000 iterations. Similarly as for the
model trained on Dataset 1, both accuracy and
cross-entropy loss quickly increase/decrease un-
til around 1000 iterations and keep improving
for the next 3000 steps. The fine-tuned Mo-
bileNetV2 mode misclassified 65 images on a
test dataset of 4409 where the Inception v3
model had misclassified 237.

Dataset Scratch InceptionV3 MobileNetV2

Dataset 1 96.3% 97.2% 99.7%
Dataset 2 98.7% 95% 98.5%

Table 3: Results for Fruit Classification

(a)

(b)

Figure 8: (a) Test accuracy over 4000 steps for
Dataset 2 with Inception, (b) Test cross-entropy loss
over 4000 steps for Dataset 2 with Inception.

5 Fruit Detection

To be able to build an accurate fruit detection
(i.e. spatial localization and recognition) sys-
tem is a key element for fruit yield estimation
and automated harvesting [12]. When training
a fruit detection system, annotations with fruit
position and class together with the actual fruit
images are needed. Finding a dataset with this
information is not as easy as finding just im-
ages of specific classes. Sa et al. [12] published
a dataset, Dataset 3, which contains bounding
box annotations for multiple fruit images as one
can see in Figure 3. Table 4 shows the total
amount of images per fruit in Dataset 3 and the
total number of images used for training and
testing.

5.1 Faster R-CNN

The implementation of a fruit detection system
was done by training a Faster R-CNN because
as shown in [12] it can be trained on a small
amount of training data. Faster R-CNN [11] is
state-of-the-art object detection system with an

6



N. Gheza Deep learning for fruits image recognition

(a)

(b)

Figure 9: (a) Test accuracy over 4000 steps for
Dataset 2 with MobileNet, (b) Test cross-entropy
loss over 4000 steps for Dataset 2 with MobileNet.

Fruit Training (# images) Test (# images) Total

Apple 51 13 64
Avocado 43 11 54
Pepper 98 22 120
Mango 136 34 170
Orange 45 12 57

Rockmelon 49 7 56
Strawberry 33 9 42

Table 4: Number of training and testing images for
each fruit in Dataset 3.

architecture composed of two modules. The first
module is a Deep Convolutional Neural Network
(DCNN) that proposes regions, and the second
module is the Fast R-CNN detector [3] that uses
the proposed regions. The entire system is a
single, unified network for object detection that
uses a Region Proposal Network (RPN) [11] to
find regions (bounding boxes) which may con-
tain objects and a Fast Region-based Convolu-
tional Neural Network (Fast R-CNN) that clas-
sify the content of each bounding box. The two
networks share the same convolutional layers
which can be a pre-trained Convolutional Neu-
ral Network (CNN) such as VGGNet or ResNet.

Figure 10 from [11] shows a high-level repre-

sentation of the Faster R-CNN architecture. At
first, the image goes through the convolutional
layers and feature maps are extracted. A sliding
window is then used in the Region Proposal Net-
work (RPN) for each location over the feature
map. For each location, k anchor boxes are used
to generate region proposals which the classifier
layer of the RPN uses to compute 2k scores that
estimate probability of whether there is object
or not for each proposal. The regression layer
of the RPN has 4k outputs encoding the coor-
dinates for each proposal. The k anchor boxes,
called anchors, are centered at the sliding win-
dow from above and are associated with a scale
and aspect ratio. The RPN uses 3 scales and
3 aspects ratios which yields to k = 9 anchors
at each sliding position. With a WxH convolu-
tional feature map, there are WHk anchors in
total.

Figure 10: Faster R-CNN architecture.

The RPN loss function can be seen in Equa-
tion 3. The first term is the classification loss
over 2 classes (the object is present or not).
The second term is the regression loss of bound-
ing boxes in the case an object is present, thus
(pi, p

∗
i ) = 1.

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )+

λ
1

Nreg

∑
i

Lreg(ti, t
∗
i )

(3)

The RPN network is used to pre-check which
anchor contains object. The anchors labelled

7



N. Gheza Deep learning for fruits image recognition

as positive are then passed to the detection net-
work for detecting the object class and to return
the bounding box of that object.

The Detection network is the Fast R-CNN [3].
It performs RoI pooling and then, the pooled
area goes through a Convolutional Neural Net-
work with two Fully Connected branches for
class softmax and bounding box regressor that
show class and location. Figure 11 from [3]
shows the Fast R-CNN architecture.

Figure 11: Fast R-CNN architecture.

5.2 Training via Transfer Learn-
ing

To train a Faster R-CNN model from scratch
would be very costly effective in terms of data
and GPU power. To train a Faster R-CNN
model with a small amount of data as for the
case of Dataset 3, fine-tuning was performed.
Fine-tuning consists of adapting a pre-trained
model to the new data [10]. In the case of the
Faster R-CNN transfer learning is performed for
both the RPN and Fast-RCNN network. The
Faster-RCNN in this paper uses the ResNet-
101 architecture to perform fine-tuning, as this
scored the best performance.

ResNet-101 is a SoA architecture for image
classification that, thanks to its very deep repre-
sentations, was able to obtain a 28% relative im-
provement on the Faster R-CNN model trained
on the COCO object detection dataset [4].

In this paper the network is trained in a
one versus rest manner for each fruit category.
This means that there are only two classes (e.g.,
‘orange’, ‘background’) for each trained model.
This is acceptable in real world applications be-
cause each fruit is cultivated separately due to
economic reasons such as fertilisation, irrigation
and the prevention of harmful diseases and in-
sects [12]. The training of each model took 2 to
4 hours and around 200 to 400 epochs. In the
next section, the results of training Faster R-
CNN models for each fruit are presented. More-

over a model trained was trained on the entire
dataset to detects and classify all the fruits using
with single model. The model, which will be re-
ferred to as ‘TuttiFrutti’ is finally presented for
experimenting purposes.

5.3 Results

A popular metric in measuring the accuracy of
object detectors like Faster R-CNN is the Mean
Average Precision (mAP). It computes how well
a detector works across all classes. Moreover, it
can be calculated across different IoU (Intersec-
tion over Union) thresholds. IoU measures the
overlap between the ground truth and the pre-
dicted boundary [6].

In this work, models are evaluated using 0.5
as IoU threshold (notation mA@0.5). Average
Recall with 0.50:0.95 IoU threshold is also taken
into consideration to get more insights on the
performance of each model.

Fruit mAP@0.5 AR@0.50:0.95

Apple 89% 70%
Avocado 80% 62%
Pepper 54% 29%
Mango 93% 62%
Orange 88% 62%

Rockmelon 82% 53%
Strawberry 93% 64%
TuttiFrutti 80% 60%

Table 5: Mean Average Precision and Average Re-
call for each Faster R-CNN model.

Table 5 contains results for each model
trained on a single fruit and the results for
the ‘TuttiFrutti’ model trained on the whole
dataset.

With the exception of the model traned to
detect peppers, which obtained a mAP@0.5 of
54%, every other model was able to obtain a
mAP@0.5 greater or equal to 80%. The mod-
els which obtained the highest mAP@0.5 are the
strawberry and mango models which obtained a
score of 93%. Figure 12c shows an instance of
strawberry detection where fully grown straw-
berries and not yet ripe strawberries are both
detected by the model. Figure 12h shows an ex-
ample instance of mango detection. The model
trained to detect apple obtained a mAP@0.5 of
89% and AR@0.50:0.95 of 70%. Figure 12a and
12b show two instances of apple detection with

8



N. Gheza Deep learning for fruits image recognition

different colors of apples. The model is capa-
ble to detect both kind of apples correctly. The
orange detector model also scored good results
with a mAP@0.5 of 88% and AR@0.50:0.95 of
62%. Figure 12d is interesting because it shows
an instance of orange detection where one of the
oranges is not in perfect conditions and still gets
detected by the model. The rockmelon detector
scored a mAP@0.5 of 82% with AR@0.50:0.95
of 53%. Figure 12f shows a perfect instance of
rockmelon detection where one of the detected
rockmelons has a finger on it. The model fined-
tuned for the detection of avocados was able to
obtain a mAP@0.5 of 80% with AR@0.50:0.95
of 62%. Figure 12e shows an example instance
of avocado detection.

The model trained on the entire dataset, ‘Tut-
tiFrutti’, thus able to detect and classify 7 dif-
ferent fruits, obtained a mAP@0.5 of 80% and
a AR@0.50:0.95 of 60%. An example instance
of detecting multiple fruits in an image can be
found in Figure 12i.

6 Discussion

The results from the fruit classification and fruit
detection models presented in the previous sec-
tions are discussed in this section.

The first fruit classification model trained in
this paper is the Deep Convolutional Neural
Network (DCNN) trained from scratch. On
Dataset 1 this model performed very similarly
to the state-of-the-art for this dataset by Horea
et al. [9]. The same architecture trained from
scratch on Dataset 2 scored very good results
with a low percentage of misclassified images.
The second technique used for fruit classifica-
tion is transfer learning. The Inception v3 and
MobileNetV2 pre-trained architectures are fine
tuned on both Dataset 1 and Dataset 2. Incep-
tion v3 obtained very good results on Dataset
1 increasing the model accuracy by 0.9%. The
fine-tuning of Inception v3 on Dataset 2 instead
did not performed as well as the first model
trained from scratch. It is the fine-tuned Mo-
bileNetV2 model that scores the best results on
both datasets. The fine-tuned model trained on
Dataset 1 improved the accuracy by 3.4% com-
pared to the model trained from scratch. Even
though MobileNetV2 fine-tuned on Dataset 2
had a slightly lower accuracy than the model
trained from scratch it improved the precision
as the number of mismathces decreased.

In this paper the implementation of a fruit
detection system was done by training a Faster
R-CNN model using Dataset 3. For each of the
7 fruit classes present in Dataset 3 a Faster R-
CNN model is fine-tuned using the ResNet-101
architecture. All models, with the exception
of the pepper model, obtained good results for
the selected metrics. The pepper model scored
much lower accuracy and recall compared to the
rest of models but still was able to detect and
classify peppers in testing images.

7 Conclusions

In conclusion, this paper presented the two
main state-of-the-art techniques for fruit images
recognition: fruit images classification and fruit
images detection.

In the developing of a fruit image classifica-
tion system, a Deep Convolutional Neural Net-
work (DCNN) trained from scratch and two
other fine-tuned pre-trained architectures (In-
ceptionV3, MobileNetV2) were compared to
each other using two different datasets: the
Fruit-360 dataset [9] and Dataset 2 [7].

To develop a fruit image detection system,
multiple Faster R-CNN models were trained
by fine-tuning the ResNet-101 architecture on
Dataset 3 [12].

Finally, this work showed how Deep Learn-
ing techniques for both fruit image classification
and fruit image detection are able to obtain high
results comparable to SoA techniques for other
image classification and detection areas.

9



N. Gheza Deep learning for fruits image recognition

References

[1] Shivang Agarwal, Jean Ogier Du Terrail,
and Frédéric Jurie. Recent advances in ob-
ject detection in the age of deep convo-
lutional neural networks. arXiv preprint
arXiv:1809.03193, 2018.

[2] Frida Femling, Adam Olsson, and Fer-
nando Alonso-Fernandez. Fruit and veg-
etable identification using machine learn-
ing for retail applications. arXiv preprint
arXiv:1810.09811, 2018.

[3] Ross B. Girshick. Fast R-CNN. CoRR,
abs/1504.08083, 2015.

[4] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the
IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[5] Andrew G. Howard, Menglong Zhu,
Bo Chen, Dmitry Kalenichenko, Wei-
jun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks
for mobile vision applications. CoRR,
abs/1704.04861, 2017.

[6] Jonathan Hui. map (mean average preci-
sion) for object detection, March 2018.

[7] Israr Hussain, Qianhua He, and Zhuliang
Chen. Automatic fruit recognition based on
dcnn for commercial source trace system.

[8] Fei-Fei Li, Andrej Karpathy, and Justin
Johnson. Cs231n: Convolutional neural
networks for visual recognition 2016. 2016.

[9] Horea Murean and Mihai Oltean. Fruit
recognition from images using deep learn-
ing. Acta Universitatis Sapientiae, Infor-
matica, 10:26–42, 06 2018.

[10] Sinno Jialin Pan and Qiang Yang. A sur-
vey on transfer learning. IEEE Transac-
tions on knowledge and data engineering,
22(10):1345–1359, 2009.

[11] Shaoqing Ren, Kaiming He, Ross Girshick,
and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal
networks. In Advances in neural informa-
tion processing systems, pages 91–99, 2015.

[12] Inkyu Sa, Zongyuan Ge, Feras Dayoub,
Ben Upcroft, Tristan Perez, and Chris Mc-
Cool. Deepfruits: A fruit detection sys-
tem using deep neural networks. Sensors,
16(8):1222, 2016.

[13] Mark Sandler, Andrew G. Howard, Meng-
long Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Inverted residuals and linear
bottlenecks: Mobile networks for classifica-
tion, detection and segmentation. CoRR,
abs/1801.04381, 2018.

[14] Christian Szegedy, Vincent Vanhoucke,
Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception ar-
chitecture for computer vision. CoRR,
abs/1512.00567, 2015.

10



N. Gheza Deep learning for fruits image recognition

(a) Apple detection (b) Apple detection (c) Strawberry detection

(d) Orange detection (e) Avocado detection (f) Rockmelon detection

(g) Mango detection (h) Pepper detection

(i) Apple and Mango detection

Figure 12: Nine instances of detection results using test images from Dataset 3.

11


	Introduction
	State Of The Art
	Datasets
	Dataset 1
	Dataset 2
	Dataset 3

	Fruit Classification
	Deep C-NN
	Training from scratch
	Results - Dataset 1
	Results - Dataset 2

	Transfer Learning
	Training via Transfer Learning
	Results - Dataset 1
	Results - Dataset 2


	Fruit Detection
	Faster R-CNN
	Training via Transfer Learning
	Results

	Discussion
	Conclusions

